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1 Introduction
Where A is the infinitesimal generator of a strongly continuous semigroup {T (t)}t≥0 of bounded linear operators
on a separable Hilbert space H with domain D(A), h : D(h) → H is a closed linear operator on H with domain
D(A) ⊂ D(h), ϕ, ψ and f : [0, T]→L 0

2 (V,H) are appropriate functions, where L 0
2 (V,H) denotes the space of all

Hilbert-Schmidt operators from V into H.

2 Preliminaries
In this section, we introduce some important results which will be needed throughout this paper.

Now, for a given T > 0, Let J = [0; T] we define

D =
�

y : [0, T]×Ω→ Rn, y is continuouse at t ̸= t i for i = 1, . . . N ,
and there exist y(t−i ) and y(t+i ) with y(t i) = y(t−i ), i = 1, · · · , N
and supt∈[0,T] E(|y(t)|2)<∞

	

,

endowed with the norm
∥y∥D = sup

θ∈[0,T]
(E(|y(t)|2)

1
2 ,

3 Section 1
In this work we show a results [3] and [1].

Theorem 3.1 This is a theorem about right triangles and can be summarised in the next equation

x2 + y2 = z2

And a consequence of theorem 3.1 is the statement in the next corollary.

Corollary 3.1.1 There’s no right rectangle whose sides measure 3cm, 4cm, and 6cm.
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A fractional Brownian motion (FBM) {BH(t)}t≥0 of Hurst parameter H ∈ (0, 1), is a continuous and centered
Gaussian process with covariance function

RH(t, s) = E(BH(t)BH(s)) :=
1
2

�

t2H + s2H − |t − s|2H
�

, for t, s ≥ 0.

Lemma 3.2 [2] For φ ∈ L
1
H ([0, T])

H(2H − 1)

∫ T

0

∫ T

0

|φ(s)||φ(t)||t − s|2H−2d tds ≤ cH∥φ∥2
L

1
H ([0,T])

. (1)
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